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Preface

The 20th International Mathematical Duel was held from 7–10
March 2012 in Bílovec. In this year the competition was organized
by Nicolaus Copernicus Gymnasium Bílovec in cooperation with Fac-
ulty of Science of Palacký University Olomouc.

Seven school-teams from Austria, Czech Republic, Poland, Italy,
Romania and Bulgaria took part in this traditional mathemati-
cal competition, namely from Bundesrealgymnasium Kepler, Graz,
Gymnázium M. Koperníka, Bílovec, I Liceum Ogólnokształcące im.
J. Słowackiego, Chorzów, Gymnázium J. Škody, Přerov, Liceo Scien-
tifico Statale A. Labriola, Roma-Ostia, Colegiul National I. L. Cara-
giale, Ploiesti and for the first time teams from Sofijska matem-
atičeska gimnazia Paisij Hilendarki, Sofia as guests.

As usual the competition was provided in the three categories
(A – contestants of the last two years, B – contestants of the 5th and
6th years, and C – contestants of the 3rd and 4th years of eight-year
grammar school). Twelve contestants (more precisely 4 in any cate-
gory) of any school took part in this competition, i.e. 81 contestants
in total.

This booklet contains all problems with solutions and results
of the 20th International Mathematical Duel from the year 2012.

Authors
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Problems



Category A (Individual Competition)

A–I–1
Solve in the domain of integers the following system of equations

x +
2
y

= z,

y +
4
z

= x,

z −
6
x

= y.

Jacek Uryga

A–I–2
We are given a cyclic quadrilateral ABCD with | 6 BDC| = |6 CAD| and
|AB| = |AD|. Prove that there exists a circle, which is tangent to all
four sides of the quadrilateral ABCD.

Robert Geretschläger

A–I–3
Determine all cubic polynomials P(x) with real coefficients such that
the equation P(x) = 0 has three real roots (not necessarily different)
fulfilling the following conditions:

a) The number 1 is a root of the considered equation.
b) For each root t of the equation P(x) = 0 the condition P(2t) = t

holds.

Pavel Calábek

A–I–4
Determine the minimum value of the expression

V =
sin α

sin β sin γ
+

sin β

sin γ sin α
+

sin γ

sin α sin β
,

where α, β , γ are interior angles of a triangle.

Jaroslav Švrček
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Category A (Team Competition)

A–T–1
Solve the following equation in positive integers

abc = 2a + 3b + 5c.

Pavel Calábek

A–T–2
Let us consider an acute-angled triangle ABC in the plane. Let D, E,
F be the feet of altitudes from vertices A, B, C, respectively. Further,
let K, L, M denote points of intersection of the lines AD, BE, CF with
the circumcircle of the triangle ABC (different from the vertices A,
B, C), respectively. Prove that the inequality

min
{

|KD|

|AD|
,

|LE|

|BE|
,

|MF|

|CF|

}
≤

1
3

holds for all acute-angled triangles ABC.

Jaroslav Švrček

A–T–3
Peter’s kit contains 6 identical sticks of 6 different colours. Peter can
construct the model of a regular tetrahedron from these six sticks.
How many distinct models exist?

Pavel Calábek
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Category B (Individual Competition)

B–I–1
Determine all pairs (p, x) fulfilling the equation

x2 = p3 + 1.

where p is a prime and x is an integer.

Jaroslav Švrček

B–I–2
A parallelogram ABCD is given in plane. A line ` passing through
B meets the side CD at the point E and the ray AD at the point F.
Determine the ratio of the areas of the triangles ABF and BEC in
terms of the ratio |CE| : |ED|.

Jacek Uryga

B–I–3
Let k, n be arbitrary real numbers with 1 ≤ k ≤ n. Prove that the
inequality

k(n − k + 1) ≥ n

holds. When does equality hold?

Józef Kalinowski

B–I–4
Prove that 2012 cannot be written as the sum of two perfect cubes.
Is it possible to write 2012 as the difference of two perfect cubes? If
not, prove that it is impossible.

Robert Geretschläger
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Category B (Team Competition)

B–T–1
Determine all real polynomials P(x), such that

P(P(x)) = x4 + ax2 + 2a

holds for some real number a.

Robert Geretschläger

B–T–2
We are given an isosceles right-angled triangle ABC. Let K be the
midpoint of the hypotenuse AB of the given triangle. Find the set
of vertices L of all isosceles right-angled triangles KLM with hy-
potenuse KL, such that the point M belongs to the side AC.

Jaroslav Švrček

B–T–3
Determine all triples (a, b, c) of positive integers for which each of
the three numbers a, b, c is a divisor of the sum a + b + c.

Robert Geretschläger
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Category C (Individual Competition)

C–I–1
Determine all positive integers such that the sum

x
2

+
2
x

is an integer.

Jaroslav Švrček

C–I–2
We are given a trapezoid ABCD with AB ‖ CD, such that there exists
a point E on the side BC with |CE| = |CD| and |BE| = |AB|. Prove that
AED is a right-angled triangle.

Józef Kalinowski

C–I–3
Two positive integers are called friends if

. each is composed of the same number of digits,

. the digits in one are in increasing order and the digits in the
other are in decreasing order, and

. the two numbers have no digits in common (like for example the
numbers 147 and 952).

Solve the following problems

a) Determine the number of all two-digit numbers that have a
friend.

b) Determine the largest number that has a friend.

Robert Geretschläger

C–I–4
Let ABC be a right-angled triangle with the hypotenuse AB, such
that |AC| : |BC| = 2 : 3 holds. Let D be the foot of its altitude from C.
Determine the ratio |AD| : |BD|.

Józef Kalinowski
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Category C (Team Competition)

C–T–1
Determine the number of all seven-digit numbers which are divisible
by 4, such that the sum of all their digits is 4.

Józef Kalinowski

C–T–2
We are given a right-angled triangle ABC with right angle at C. A
point D lies on AB, such that |BD| = |BC|. A point E lies on the line
perpendicular to AB and passing through A, such that |AE| = |AC|.
The points E and C are in the same half-plane defined by AB. Show
that the points C, D and E lie on a common line.

Erich Windischbacher

C–T–3
We are given 8 coins, no two of which have the same weight, and a
scale with which we can determine which group of coins placed on
either end is heavier and which is lighter. We wish to determine
which of the 8 coins is the heaviest and which is the lightest. Prove
that this can be done with at most 10 weighings.

Robert Geretschläger
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Solutions



Category A (Individual Competition)

A–I–1
Note that the fraction 2

y is an integer and therefore y ∈ {−2, −1, 1, 2}.
Since x, y, z ≠ 0, we can equivalently multiply the equations by

z, y and x, respectively, obtaining the system

xy + 2 = yz,
yz + 4 = zx,
zx − 6 = xy.

It is easy to see that the last equation results from the first two and
therefore it can be omitted.

Now, we observe that if a triple of integers (x, y, z) is a solution
of the system, then also the triple (−x, −y, −z) is a solution. Thus, we
have to consider only two cases for y > 0.

If y = 1, then we get
x + 2 = z,
z + 4 = zx.

and so

x = z − 2,
z + 4 = z(z − 2).

In this case we obtain two solutions: z = −1, x = −3 and z = 4, x = 2.
If y = 2, then we get

2x + 2 = 2z,
2z + 4 = zx.

and then

x = z − 1,
2z + 4 = z(z − 1).

In this case we obtain two another solutions: z = −1, x = −2 and z = 4,
x = 3.
Conclusion. The complete solution consists of eight triples (x, y, z):
(−3, 1, −1), (2, 1, 4), (−2, 2, −1), (3, 2, 4), (3, −1, 1), (−2, −1, −4), (2, −2, 1),
(−3, −2, −4).
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A–I–2
Since |6 CAD| = | 6 BDC| = | 6 BAC|, we have |BC| = |CD|. It therefore
follows that triangles ABC and ADC are congruent, since we have
|AB| = |AD|, |BC| = |BD| and AC is a common side. We see that

A

B

C

D

ABCD is a kite (deltoid), and it therefore certainly has an incircle
with midpoint on AC, as claimed.

A–I–3
If 1 is triple root of the P(x) = 0 then P(x) = a(x − 1)3 and from the
condition b) we obtain a ⋅ 13 = 1 and so a = 1 and in this case we have

P(x) = (x − 1)3. (1)

If 1 is double root of the P(x) = 0 then P(x) = a(x − 1)2(x − x1)
where x1 ≠ 1. Using b) for t = 1 and t = x1 we get

a(2 − x1) = 1 and a(2x1 − 1)2x1 = x1.

From the first equation a ≠ 0 and x1 = 2 −
1
a . The second equation

gives us either x1 = 0 (so a = 1
2 ) or (2x1 − 1)2 = 1

a . Substituting for
x1 = 2 −

1
a we get

9 −
13
a

+
4
a2 = 0.

Solving this equation we obtain a = 1 and a = 4
9 . In these cases x1 = 1

(which contradicts x1 ≠ 1) or x1 = −
1
4 . So we get further solutions

P(x) =
1
2

x(x − 1)2 and P(x) =
4
9

(x − 1)2(x +
1
4

). (2)
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If 1 is single root of the the P(x) = 0 and this equation has only
one root x1 ≠ 1 then P(x) = a(x − 1)(x − x1)2. Using b) we obtain

a(2 − x1)2 = 1 and a(2x1 − 1)x2
1 = x1.

From the first equation a ≠ 0 and 1
a = (2 − x1)2. The second equation

implies either x1 = 0 (so a = 1
4 ) or 2x2

1 − x1 = 1
a . Substituting for

1
a = (2 − x1)2 we get

x2
1 + 3x1 − 4 = 0.

Solving this equation we obtain x1 = 1 (which contradicts x1 ≠ 1) and
x1 = −4, so a = 1

36 . In this case we get further solutions

P(x) =
1
4

x2(x − 1) and P(x) =
1

36
(x − 1)(x + 4)2. (3)

Finally, let us assume that the cubic equation has three distinct
roots and P(x) = ax3 + bx2 + cx + d. From b) follows that an equation
P(2x) − x = 0 has the same three distinct roots. This implies that
the equation 0 = 8P(x) − (P(2x) − x) = 4bx2 + (6c + 1)x + 7d has the
same three distinct roots and so its coefficients vanish. Easily we
get b = 0, c = −

1
6 , d = 0. The condition a) implies that 1 is root and

so a −
1
6 = 0. From it follows that a = 1

6 and in this case we get the
solution

P(x) =
1
6

(x3
− x) =

1
6

(x − 1) x (x + 1). (4)

Conclusion. The given equation has exactly six solutions given by
(1)–(4).

A–I–4
Since α, β and γ are interior angles of some triangle, the values
sin α, sin β and sin γ are positive real numbers. We can use the A-G
means inequality in the form

V =
sin α

sin β sin γ
+

sin β

sin γ sin α
+

sin γ

sin α sin β
≥ 3 3

√
1

sin α sin β sin γ
.

Since the function sin x is concave on (0; π), we can estimate the de-
nominator of the right-hand side of the last inequality by Jensen’s
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inequality (combining with the A-G means inequality) in the follow-
ing way:

3
√

sin α sin β sin γ ≤
sin α + sin β + sin γ

3

≤ sin
(

α + β + γ

3

)
= sin

π

3
=

√
3

2
.

Thus we have V ≥ 2
√

3 with equality for α = β = γ = 1
3 π, i.e. in the

case of the equilateral triangle.

Conclusion. The minimum value of the expression V is 2
√

3.

Another solution (by Václav Kapsia, GMK Bílovec). Let a, b, c be
lengths of sides and P the area of the triangle. Rewriting the expres-
sion V and using the law of sines we obtain

V =
sin2

α

sin α sin β sin γ
+

sin2
β

sin α sin β sin γ
+

sin2
γ

sin α sin β sin γ

=
a2

bc sin α
+

b2

ca sin β
+

c2

ab sin γ
.

Since
bc sin α = ca sin β = ab sin γ = 2P,

we have

V =
a2 + b2 + c2

2P
.

By the well-known inequality a2+b2+c2 ≥ 4
√

3 P (see for example the
problem 2, 3rd IMO), we finally get the required inequality V ≥ 2

√
3.

Another solution. Using the A-G means inequality we have

sin α

sin β sin γ
+

sin β

sin γ sin α
≥

2
sin γ

,
sin β

sin γ sin α
+

sin γ

sin α sin β
≥

2
sin α

,

sin γ

sin α sin β
+

sin α

sin β sin γ
≥

2
sin β

.
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Adding up all three inequalities and using Jensen’s inequality for
the convex function 1

sin x on (0; π) we obtain

V ≥
1

sin α
+

1
sin β

+
1

sin γ
≥

3

sin
(

α+β+γ

3

) = 2
√

3,

which is required.

Category A (Team Competition)

A–T–1
Firstly we discuss some special cases for a and b.

For a = 1 we have to solve bc = 2 + 3b + 5c which is equivalent
to (b − 5)(c − 3) = 17. Since b − 5 > −4 and c − 3 > −2, both factors are
positive integers factors of the prime 17, so we have solutions

(a, b, c) ∈ {(1, 6, 20); (1, 22, 4)}.

For a = 2 we have the equation 2bc = 4 + 3b + 5c which is equiv-
alent to (2b − 5)(2c − 3) = 23. In the same way we obtain solutions

(a, b, c) ∈ {(2, 3, 13); (2, 14, 2)}.

For b = 1 we have to solve ac = 2a + 3 + 5c which is equivalent to
(a − 5)(c − 2) = 13. Further solutions are then

(a, b, c) ∈ {(6, 1, 15); (18, 1, 3)}.

For b = 2 we have the equation 2ac = 2a + 6 + 5c which is equiv-
alent to (2a − 5)(c − 1) = 11. Thus we have solutions

(a, b, c) ∈ {(3, 2, 12); (8, 2, 2)}.

Now we can assume a, b ≥ 3. In this case a −
5
b ≥

4
3 and b −

5
a ≥

4
3 .

From abc = 2a + 3b + 5c we obtain

c =
2a

ab − 5
+

3b
ab − 5

=
2

b −
5
a

+
3

a −
5
b

≤ 2 ⋅
3
4

+ 3 ⋅
3
4

=
15
4

.
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So c ≤ 3.
Finally we have to discuss three possibilities for c.

. If c = 1 we will solve the equation ab = 2a + 3b + 5 which is
equivalent to (a − 3)(b − 2) = 11. Now we obtain two solutions

(a, b, c) ∈ {(4, 13, 1); (14, 3, 1)}.

. If c = 2 we will solve the equation 2ab = 2a + 3b + 10 which is
equivalent to (2a − 3)(b − 1) = 13. In this case we get

(a, b, c) ∈ {(2, 14, 2); (8, 2, 2)},

but both of them have been obtained previously.
. If c = 3 we will solve the equation 3ab = 2a + 3b + 15 which is

equivalent to (a − 1)(3b − 2) = 17. In this case we have only one
solution in positive integers

(a, b, c) ∈ {(18, 1, 3)}

also obtained previously.

Conclusion. All solutions of the original equation in positive integers
are triples (a, b, c) from the set

{(1, 6, 20); (1, 22, 4); (2, 3, 13); (2, 14, 2); (3, 2, 12);
(4, 13, 1); (6, 1, 15); (8, 2, 2); (14, 3, 1); (18, 1, 3)}.

A–T–2
Let V be the orthocenter of the considered acute-angled triangle
ABC. It is well-known that the mirror images of V by the lines
AB, BC a CA lie on the cirmumcircle of this triangle. There are the
points M, K a L, respectively. Thus for instance, the triangle ABV is
congruent to the triangle ABM (both triangles have the same area).

For the areas SABV and SABC of the triangles ABV and ABC,
respectively, we have

SABV

SABC
=

|VF|

|CF|
=

|MF|

|CF|
.
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A B

C

D

E

F

V

K

L

M

Similarly

SBCV

SABC
=

|VD|

|AD|
=

|KD|

|AD|
and

SCAV

SABC
=

|VE|

|BE|
=

|LE|

|BE|
.

Adding up left sides the last three equalities we get

SABV

SABC
+

SBCV

SABC
+

SCAV

SABC
=

SABV + SBCV + SCAV

SABC
= 1.

From the other side we also have

|KD|

|AD|
+

|LE|

|BE|
+

|MF|

|CF|
= 1.

Since each of three fractions (summands) on the left side of the last
expression is a positive real number, the validity of the given state-
ment immediately follows, i.e. the inequality

min
{

|KD|

|AD|
,

|LE|

|BE|
,

|MF|

|CF|

}
≤

1
3

is true and the proof is finished.
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A–T–3
Let us call the coloured sticks (edges) by 1, 2, . . . , 6. Further let us
put the model of the tetrahedron such that the stick 1 is on the desk
in front of us. Other edges on the desk let us call left and right.

front

left right

Let us consider the stick 2. If this edge is skew to stick 1 we
can rotate the tetrahedron about the common axis of edges 1 and 2
such that the stick 3 and the stick 1 are on the desk. The edge 3 is
either the left or right edge and we cannot rotate the tetrahedron in
such a way that the left edge 3 moves to the right edge. Now the
tetrahedron is fixed. There are 3! ways to complete colouring the
other edges and so in this case we have 2 ⋅ 3! = 12 distinct colourings
depending on whether the edge 3 is left or right.

Now we suppose, that the stick 2 is a neighbour of the stick 1.
We rotate the tetrahedron such that the edges 1 and 2 are on the
desk and stick 1 is in front. Now the tetrahedron is fixed and we
have 4! ways to complete colourings other edges. In this case we
have 2 ⋅ 4! = 48 distinct colourings. Altogether, there are 12 + 48 =
60 distinct colourings of the edges of the regular tetrahedron by 6
colours.

Category B (Individual Competition)

B–I–1
First of all, we can rewrite and factorize the given equation to the
form

x2
− 1 = (x − 1)(x + 1) = p3.
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With each solution (x, p) of the given equation (−x, p) is also a solu-
tion. Therefore we can consider x ≥ 0 and (with x − 1 < x + 1) we have
two possibilities in that case:

. (x − 1 = 1) ∧ (x + 1 = p3). This implies x = 2, p3 = 3 and we
therefore have no solution in this case.

. (x − 1 = p) ∧ (x + 1 = p2). Subtracting these two equations we
obtain the following quadratic equation with unknown p

p2
− p − 2 = 0

with two real roots p = −1, which doesn’t fulfill the conditions of
the given problem, and further p = 2.

Conclusion. The given equation has exactly two solutions, namely:
(x, p) = (3; 2) and (x, p) = (−3; 2).

B–I–2
Note that by the angle-angle rule the triangles ABF and BEC are
similar (the angles | 6 ABF| = | 6 BEC| and | 6 AFB| = | 6 CBE| are alter-
nate ones). Therefore the ratio of the areas of the triangles ABF and

A B

CD E

F

`

BEC is equal to the square of the ratios of corresponding sides. Thus

SABF

SBEC
= s2, where s =

|AB|

|CE|
.

Since ABCD is parallelogram, we get

s =
|CD|

|CE|
=

|CE| + |ED|

|CE|
= 1 +

|ED|

|CE|

22



Denoting r = |CE|

|ED|
, we have

SABF

SBEC
=
(

1 +
1
r

)2

=
(

r + 1
r

)2

.

B–I–3
Rewriting the given inequality k(n − k + 1) ≥ n in the equivalent
form, we obtain (n − k)(k − 1) ≥ 0. The last inequality is true by the
assumptions 1 ≤ k ≤ n.

Equality holds for k = n or k = 1.

B–I–4
Firstly we will prove that every cube of an integer has remainder 0,
1 or 8 after division by 9. Let n = 3k + r, where r ∈ {0, 1, 2} and k is
an integer. This follows from the identity n3 = 9(3k3 + 3k2r + kr2) + r3.

This implies that the sum of two perfect cubes has remainders
0, 1, 2, 7 or 8. Since 2012 has the remainder 5 after division by 9,
it follows that 2012 cannot be expressed as the sum of two perfect
cubes.

This also means that 2012 cannot be expressed as the difference
of two perfect cubes because m3 − n3 = m3 + (−n)3.

Category B (Team Competition)

B–T–1
Since P(P(x)) is of fourth degree, P(x) must be quadratic, and we have
P(x) = x2 + px + q. From this we obtain

P(P(x)) = (x2 + px + q)2 + p(x2 + px + q) + q

= x4 + 2px3 + (p2 + p + 2q)x2 + (p2 + 2pq)x + pq + q + q2.

If this is to be equal to x4 + ax2 + 2a for all values of x, we see that
p = 0 must hold (by checking the cubic coefficient), and we therefore
obtain P(P(x)) = x4 + 2qx2 + q + q2. Comparing coefficients yields the
quadratic equation q2 + q = 4q, which is equivalent to q2 = 3q, and q
is therefore either equal to 0 or 3. The two possible polynomials are
therefore P(x) = x2 and P(x) = x2 + 3.
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B–T–2
Solution. Let the points M, L be situated as on the picture below.
Since |6 KLM| = | 6 KCM| = 45◦, the points K, L, C, M lie on the same
circle k. Thus

| 6 KCL| = |6 KML| = 90◦,

which means that k is a Thales circle with diameter KL and there-
fore the point L lies on the perpendicular to CK. If both points M, L
are lying in the opposite half-plane defined by KC, we get the same
result.

A B

C

M

K

L

L′

PQ

R

k

k′

Similarly, let us consider the vertex L = L′ in the opposite half-
plane defined by the line KM (see picture). Then the points K, M, L′,
A lie also on the Thales circle k′ with the diameter KL′. Moreover
both circles k and k′ are congruent (their diameters KL and KL′ are
congruent).

This implies that the point L lies necessarily on the segment PQ
or on the segment QR.

Conversely, it is easy to see that for an arbitrary point L which
belongs to the broken line PQR there (uniquely) exists a point M on
the side AC such that the triangle KLM is an right-angled isosceles
triangle with hypotenuse KL.
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Conclusion. The set of all points L with the required property is the
broken line PRQ, such that PQ ⊥ QR and C, A are the midpoints of
the line segments PQ, QR, respectively.

B–T–3
Without loss of generality, we assume a ≤ b ≤ c. Since c  (a + b + c),
we have c  (a+b) and therefore c ≤ a+b ≤ 2c so c = a+b or 2c = a+b.

If c = a + b from b  (a + c) = 2a + b it follows b  2a. This implies
either b = a or b = 2a. The first case gives triple (a, a, 2a), the second
one gives triple (a, 2a, 3a).

If 2c = a + b from the inequality a ≤ b ≤ c further it follows
a = b = c.
Conclusion. There are 10 possible triples satisfying the problem.
There are (a, a, a), (a, a, 2a), (a, 2a, a), (2a, a, a), (a, 2a, 3a), (a, 3a, 2a),
(2a, a, 3a), (2a, 3a, a), (3a, a, 2a), (3a, 2a, a) where a is an arbitrary
positive integer what we can easy check.
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Category C (Individual Competition)

C–I–1
Since

x
2

+
2
x

=
x2 + 4

2x
,

we can see that x must be an even positive number (the denominator
of the fraction on the right side is divisible by 2). Therefore x = 2m
(m is a positive integer). Further we can rewrite the given sum in
the following form

x
2

+
2
x

=
4m2 + 4

4m
=

m2 + 1
m

= m +
1
m

,

which implies m = 1, and subsequently x = 2.

Conclusion. There exists only one positive integer x fulfilling condi-
tions of the given problem, namely x = 2.

Another solution (by Jan Gocník, GJŠ Přerov). Let

2
x

+
x
2

= n,

where n is an integer. Multiplying both sides of this equation by 2,
we get

x +
4
x

= 2n.

Since x and 2n are positive integers, the number 4 must be divisible
by x. Thus x ∈ {1, 2, 4} and simultaneously x + 4

x must be even.
Therefore x = 2.

C–I–2
Let | 6 ABC| = β and |6 BCD| = γ. In the trapezoid ABCD we have
β + γ = 180◦. Since |CE| = |CD|, the triangle DEC is isosceles and

|6 CDE| = | 6 CED| = 90◦ −
γ

2
.
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β

γ

A B

CD

E

Similarly, the triangle ABE is also isosceles and we have

| 6 EAB| = | 6 BEA| = 90◦ −
β

2
.

and therefore the equality

| 6 CED| + |6 DEA| + |6 BEA| = 180◦

holds. Finally

90◦ −
γ

2
+ | 6 DEA| + 90◦ −

β

2
= 180◦

and we obtain

|6 DEA| =
β

2
+

γ

2
=

β + γ

2
=

180◦

2
= 90◦.

Thus AED is a right-angled triangle, and the proof is finished.

C–I–3
a) Every two-digit number n which is composed from different dig-
its, has its digits in increasing or decreasing order. Moreover there
are at least two non-zero digits a and b different from the digits of
n. It follows, that the friend of n is one of numbers ab or ba. So,
the number of all two-digit numbers with a friend is equal to the
number of all two-digit numbers composed of different digits. There
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are 90 two-digit number of which 9 (11, 22, . . . , 99) consist of identi-
cal digits. Therefore there are 81 two-digit numbers which have a
friend.
b) If the number with a friend has k digits, its friend also has k dif-
ferent digits and together the have 2k different digits. Since there
are 10 digits, the largest number with a friend has at most 5 digits.
No number begins with 0, so 0 is in a number with digits in decreas-
ing order. Moreover, if number n with digits in increasing order has
a friend k, its palindrome is greater and has a friend (namely the
palindrome to k). The largest number with a friend has different
digits in decreasing order, has at most five digits and one of its digits
is 0. So, the largest such number is therefore 98760 and its friend is
12345.

C–I–4
Let us consider a right-angled triangle ABC with hypotenuse AB
such that |AC| : |BC| = 2 : 3. The right-angled triangles ADC and
CDB are similar, because theirs measures of interior angles are
equal. Then it holds

|AD|

|CD|
=

|CD|

|DB|
=

|AC|

|BC|
=

2
3

.

This implies

|AD| =
2
3

|CD| and |DB| =
3
2

|CD|.

A B

C

D

Further we obtain
|AD|

|BD|
=

2
3 |CD|

3
2 |CD|

=
4
9

,
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and thus
|AD| : |BD| = 4 : 9.

Another solution. By Euclid’s theorem in the right-angled triangle
ABC we have

|AD| ⋅ |AB| = |AC|
2, |BD| ⋅ |AB| = |BC|

2,

which implies

|AD| : |BD| = |AC|
2 : |BC|

2 = 4 : 9.

Category C (Team Competition)

C–T–1
Let us consider four possibilities (by the first digit from the left) for
seven-digit positive integers which are divisible by 4:

. The first digit from the left is 4. In this case only the number
4 000 000 fulfils both requirements of the given problem.

. The first digit from the left is 3. Then both assumptions are
fulfilled by the numbers 3 100 000, 3 010 000, 3 001 000 and
3 000 100.

. The first digit from the left is 2. In this case both assumptions
are fulfilled by positive integers 2 200 000, 2 020 000, 2 002 000,
2 000 200 and 2 000 020. Further we also obtain 2 110 000,
2 101 000, 2 100 100, 2 011 000, 2 010 100 and 2 001 100.

. The first digit from the left is 1. Then the assumptions are ful-
filled by the numbers 1 300 000, 1 030 000, 1 003 000 and
1 000 300, also we obtain 1 210 000, 1 201 000, 1 200 100,
1 021 000, 1 020 100, 1 002 100 and 1 120 000, 1 102 000,
1 100 200, 1 100 020, 1 012 000, 1 010 200, 1 010 020, 1 001 200,
1 001 020, 1 000 120, 1 000 012 and finally we obtain the four
numbers 1 111 000, 1 110 100, 1 101 100 and 1 011 100.

Conclusion. Altogether we have 41 positive integers fulfilling both
requirements of the given problem.
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C–T–2
Let α = |6 BAC| and β = | 6 ABC|. Since both triangles BCD and ACE
are isosceles, we can see that | 6 BCD| = |6 BDC| = β

2 , and | 6 ACE| =
| 6 AEC| = 45◦ + α

2 , . It therefore follows

| 6 ACE| + | 6 ACB| + | 6 BCD| =
(

45◦ +
α

2

)
+ 90◦ +

β

2
= 135◦ +

α + β

2
.

A B

C

D

E

Since α + β = 90◦, the right-hand side of the last expression is equal
to 180◦. It follows that D, C and E are collinear, as claimed.

C–T–3
We first divide into 4 pairs and perform 4 weighings. The four heav-
ier coins are put into group A, which must contain the heaviest coin,
and the others in group B, which must contain the lightest. Divid-
ing group A into 2 pairs, we repeat this, identifying the two heavi-
est coins, and one final weighing of the resulting pair identifies the
heaviest coin in the group. We have made 3 weighings in group A to
identify the heaviest coin, and three analogous weighings in group
B identify the lightest. Altogether, we have performed 10 weighings,
and identified the heaviest and lightest coin, as required.
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Results



Category A (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Konstantinov Hristov Nikola SMGPH Sofia 8 8 5 7 28
2. Voroneanu Radu Ştefan CNC Ploiesti 8 8 2 8 26
3. Cangea Cătălina CNC Ploiesti 8 7 2 8 25
4. Kapsia Václav GMK Bílovec 8 8 0 7 23
5. Bodzilov Asenov Ivan SMGPH Sofia 8 8 1 2 19
6. Bungiu Alexandru Ionuţ CNC Ploiesti 8 8 2 0 18

Gocníková Eva GJŠ Přerov 8 8 2 0 18
Marinov Vanislavov Teodor SMGPH Sofia 7 8 2 1 18

9. Kortezov Ivajlov Ivo SMGPH Sofia 6 8 0 1 15
10. Kopf Michal GMK Bílovec 3 8 1 2 14
11. Andritsch Clemens BRG Graz 3 8 1 1 13
12. Solovská Kateřina GMK Bílovec 4 8 0 0 12
13. Trutman Pavel GMK Bílovec 8 0 3 0 11
14. Veigang-Rădulescu Vlad Petru CNC Ploiesti 8 0 1 1 10
15. Chmela Lukáš GJŠ Přerov 0 8 1 0 9
16. Prach Bernd BRG Graz 3 0 5 0 8

Weiss Andreas BRG Graz 0 8 0 0 8
18. Svibic Martina BRG Graz 0 4 0 0 4

Setlak Natalia I LO Chorzów 4 0 0 0 4
20. Harlenderová Alena GJŠ Přerov 2 0 1 0 3

Bastianelli Marianna LSSL Roma 3 0 0 0 3
Tobia Michele LSSL Roma 0 3 0 0 3

23. Simeoni Lorenzo LSSL Roma 0 1 0 1 2
24. Spyra Adam I LO Chorzów 0 0 0 0 0

Wernicki Wojciech I LO Chorzów 0 0 0 0 0
Krčmář Ondřej GJŠ Přerov 0 0 0 0 0
Centini Manuel LSSL Roma 0 0 0 0 0
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Category B (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Ivanova Todorova Velina SMGPH Sofia 8 8 8 8 32
Rogachev Ivanov Emilian SMGPH Sofia 8 8 8 8 32
Suvandzieva Rumenova VladimiraSMGPH Sofia 8 8 8 8 32

4. Paraschiv George CNC Ploiesti 8 8 8 7 31
Tenev Antonov Aleksandar SMGPH Sofia 7 8 8 8 31

6. Ławniczak Łukasz I LO Chorzów 6 8 8 8 30
Socha Jarosłav I LO Chorzów 8 6 8 8 30

8. Roşu Octavian CNC Ploiesti 8 8 8 4 28
9. Calábková Markéta GJŠ Přerov 8 8 8 3 27

10. Cremarenko Diana CNC Ploiesti 2 8 8 8 26
11. Kremel Tomáš GJŠ Přerov 4 8 8 5 25
12. Vincena Petr GJŠ Přerov 8 7 8 0 23
13. Prach Heinz BRG Graz 8 0 8 4 20
14. Knob Lukáš GJŠ Přerov 8 8 3 0 19
15. Wantula Szymon GMK Bílovec 4 0 8 4 16

Minorczyk Artur I LO Chorzów 4 0 8 4 16
17. Pudda Francesco LSSL Roma 8 0 5 0 13
18. Vaněk Petr GMK Bílovec 3 2 7 0 12
19. Krejčí Jan GMK Bílovec 3 0 8 0 11

Šrůtek Michal GMK Bílovec 2 0 8 1 11
21. Matei Andrei CNC Ploiesti 0 8 1 0 9
22. Prach Gerda BRG Graz 4 0 2 2 8
23. Mazziti Paolo LSSL Roma 4 0 1 0 5
24. Bordoni Simone LSSL Roma 1 2 0 0 3
25. Feistritzer Felix BRG Graz 0 0 0 1 1
26. Costantini Federico LSSL Roma 1 0 0 0 1
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Category C (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Andritsch Benedikt BRG Graz 8 8 8 8 32
Atanasov Raikov Daniel SMGPH Sofia 8 8 8 8 32
Markova Hristova Denica SMGPH Sofia 8 8 8 8 32
Najdenova Nikolaeva Violeta SMGPH Sofia 8 8 8 8 32

5. Gocník Jan GJŠ Přerov 8 8 7 8 31
6. Nicolescu Răzvan CNC Ploiesti 8 8 5 8 29

Rudzev Zdravkov Dimitar SMGPH Sofia 5 8 8 8 29
8. Borówka Sebastian I LO Chorzów 4 8 8 8 28

Tudor Costin CNC Ploiesti 8 8 4 8 28
10. Savu Mihnea CNC Ploiesti 1 8 8 8 25

Greco Giacomo LSSL Roma 1 8 8 8 25
12. Cappuccio Daniele LSSL Roma 7 8 8 0 23
13. Paliga Jakub I LO Chorzów 7 8 4 3 22
14. Ślusarczyk Michał I LO Chorzów 8 0 5 8 21
15. Andritsch Konstantin BRG Graz 8 2 8 0 18

Prach Doris BRG Graz 8 0 2 8 18
17. Vyciślok Artur I LO Chorzów 1 8 8 0 17
18. Horiatakis Daniel BRG Graz 1 8 7 0 16

Poljak Marian GJŠ Přerov 1 1 8 6 16
20. Mihalcea-Simoiu Theodor CNC Ploiesti 1 2 4 8 15
21. Marras Gloria LSSL Roma 1 8 4 0 13
22. Tížková Tereza Bílovec 1 8 0 0 9
23. Čáp Šimon Bílovec 1 0 6 0 7
24. Ferrante Giacomo LSSL Roma 1 0 4 0 5
25. Vojkůková Kateřina Bílovec 1 0 1 0 2

Vaculová Petra GJŠ Přerov 1 1 0 0 2
27. Novák Radek Bílovec 1 0 0 0 1

Andrlík Jiří GJŠ Přerov 1 0 0 0 1



Category A (Team Competition)

Rank School 1 2 3 ∑

1. CN Caragiale Ploiesti 8 8 8 24
2. SMG PH Sofia 0 8 5 13
3. BRG Graz 3 0 8 11

GJŠ Přerov 3 0 8 11
GMK Bílovec 1 6 4 11

6. I LO Chorzów 3 0 0 3
7. LSS Labriola Roma 0 0 2 2

Category B (Team Competition)

Rank School 1 2 3 ∑

1. SMG PH Sofia 8 8 8 24
2. I LO Chorzów 8 2 7 17
3. LSS Labriola Roma 8 2 1 11
4. BRG Graz 0 6 4 10

CN Caragiale Ploiesti 1 1 8 10
6. GMK Bílovec 0 2 4 6
7. GJŠ Přerov 0 4 0 4

Category C (Team Competition)

Rank School 1 2 3 ∑

1. CN Caragiale Ploiesti 8 8 8 24
GJŠ Přerov 8 8 8 24
I LO Chorzów 8 8 8 24
SMG PH Sofia 8 8 8 24

5. BRG Graz 8 3 8 19
6. LSS Labriola Roma 7 3 8 18
7. GMK Bílovec 8 0 8 16
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Odpovědná redaktorka Mgr. Jana Kreiselová
Technické zpracování RNDr. Pavel Calábek, Ph.D.

Publikace neprošla ve vydavatelství redakční a jazykovou úpravou.
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